

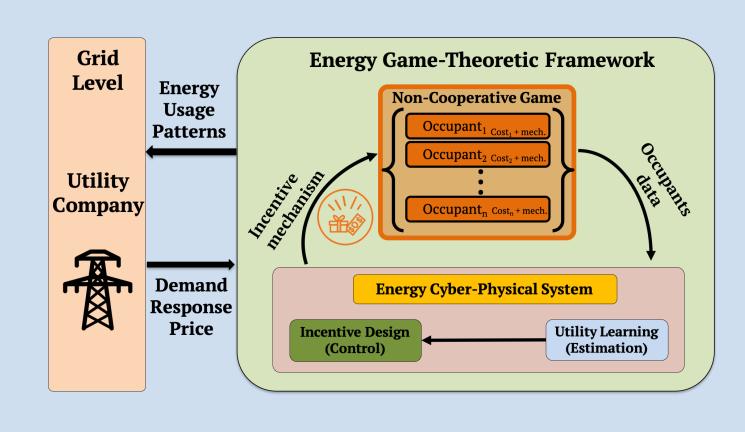
Design, Benchmarking and Graphical Lasso based Éxplainability Analysis of an Energy Game-Theoretic Framework

Hari Prasanna Das, Ioannis C. Konstantakopoulos, Aummul Baneen Manasawala, Tanya Veeravalli, Huihan Liu and Costas J. Spanos University of California, Berkeley

Introduction

Buildings, both residential and commercial, account for more than $\sim 50\%$ of global electricity consumption and $\sim 40\%$ of worldwide CO_2 emissions!

- Attempts to improve energy efficiency in buildings include implementing control and automation approaches alongside techniques like incentive design and price adjustment to more effectively regulate the energy usage.
- But, occupants typically lack the independent motivation necessary to optimize their energy usage.
- Energy Game-Theoretic Framework: Incentivize occupants to modify their behavior in a competitive game setting so that the over-all energy consumption in the building is reduced.
- The framework can also be integrated with the power grid to have dynamic protocols for demand response.

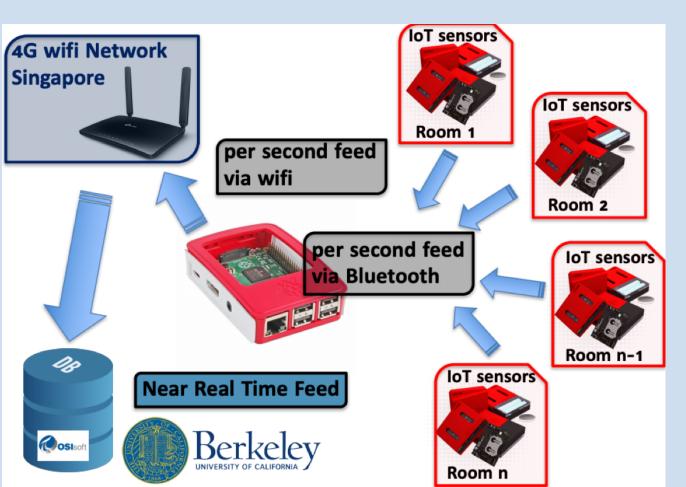


Interplay between electric grid and proposed framework

We present a benchmarked open-sourced dataset from an energy social game experiment at Nanyang Technological University (NTU), Singapore.

Social Game Experiment

- Experimental environment: Residential housing single room apartments at NTU
- Deployed IoT sensors for energy resource observation and employed an web-interface for interaction with players



IoT Sensors Configuration

Web Interface

- The front-end was a web portal to report the occupants about real-time status
- Occupants were observed before game for one month, which serves as our baseline
- We employed a lottery mechanism consisting of gift cards to incentivize occupants, where the probability of winning was proportional to the players points in the game,

$$\hat{p}_i^d(b_i, u_i) = s_i \frac{b_i - u_i^d}{b_i}$$

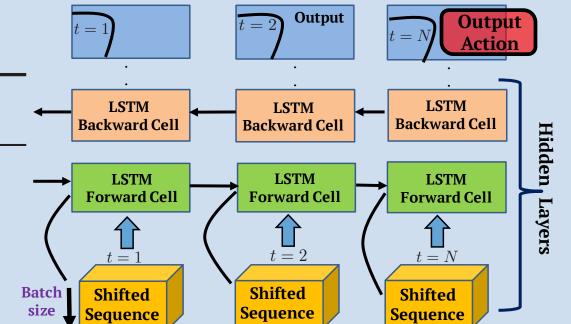
where \hat{p}_i^d is the points earned, u_i^d is the usage on day d for resource i, b_i is the resource's baseline and s_i is a points booster for inflating the points as part of framing.

• We use sequential non-cooperative discrete game concept for the game design [1].

Benchmarking of Energy Resource Usage Forecast

Since human interaction data in general is imbalanced, we use the Synthetic Minority Over-Sampling(SMOTE) technique for providing balanced data sets first. Reported are AUC scores for various models with step ahead (sensory data accounted) vs sensor free cases.

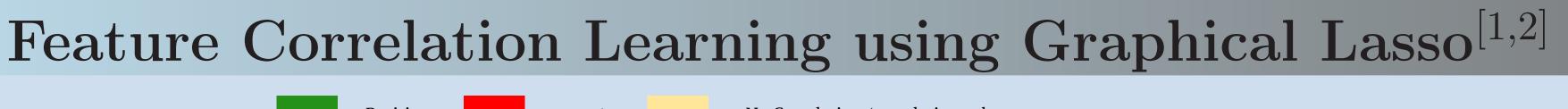
"Step-ahead"/"Sensor-free"	Ceiling Fan	C. Light	Desk Light
Logistic regression	$0.83 \; / \; 0.65$	$0.78 \ / \ 0.61$	$0.78 \ / \ 0.68$
Penalized l_1 Logistic regression	$0.80 \hspace{0.1cm} / \hspace{0.1cm} 0.65$	$0.77\ /\ 0.56$	$0.78 \; / \; 0.64$
Bagged Logistic regression	$0.84 \; / \; 0.66$	$0.80 \ / \ 0.59$	$0.79 \; / \; 0.68$
LDA	$0.81 \ / \ 0.65$	$0.78 \ / \ 0.58$	$0.74 \; / \; 0.68$
K-NN	$0.76 \hspace{0.1cm} / \hspace{0.1cm} 0.53$	$0.77\ /\ 0.56$	$0.74 \mid 0.55$
Support Vector Machine	$0.82 \mid 0.65$	$0.78 \ / \ 0.60$	$0.76 \ / \ 0.68$
Random Forest	$0.91 \ / \ 0.60$	$0.78 \; / \; 0.59$	$0.98\ /\ 0.63$
Deep Neural Network	$0.80 \hspace{0.1cm} / \hspace{0.1cm} 0.55$	$0.76 \ / \ 0.60$	$0.78\ /\ 0.64$
Deep Bi-directional RNN	0.97 / 0.71	0.85 / 0.66	0.99 / 0.76

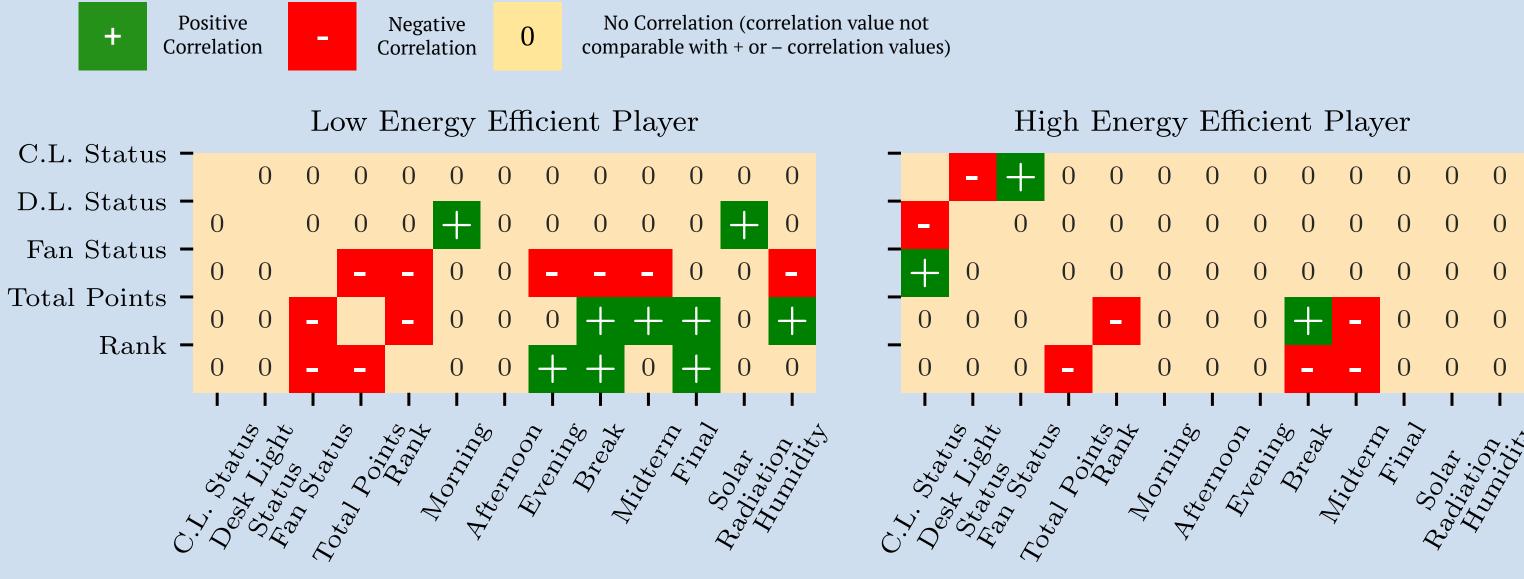


Deep Bi-directional RNN

Energy Savings achieved in the Social Game

Weekday				Weekend				
Device	Before	After	<i>p</i> -value	$\Delta~\%$	Before	After	<i>p</i> -value	$\Delta~\%$
Ceiling Light	417.5	393.9	0.02	5.6	412.3	257.5	0	37.6
Desk Light	402.2	157.5	0	60.8	517.6	123.3	0	76.2
Ceiling Fan	663.5	537.6	0	19.0	847.1	407.0	0	51.9





Open-Sourced Dataset

Paper

Dataset/ Demo

References

- [1] I. C. Konstantakopoulos et al. Design, Benchmarking and Explainability Analysis of a Game-Theoretic Framework towards Energy Efficiency in Smart Infrastructure. arXiv preprint arXiv:1910.07899, 2019
- H. P. Das et al. A Novel Graphical Lasso based approach towards Segmentation Analysis in Energy Game-Theoretic Frameworks. arXiv preprint arXiv:1910.02217, 2019

Acknowledgements

This research is funded by the Republic of Singapore's National Research Foundation through a grant to the Berkeley Education Alliance for Research in Singapore (BEARS) for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) Program. BEARS has been established by the University of California, Berkeley as a center for intellectual excellence in research and education in Singapore.